首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21639篇
  免费   1515篇
  国内免费   9篇
  2023年   112篇
  2022年   99篇
  2021年   507篇
  2020年   351篇
  2019年   471篇
  2018年   596篇
  2017年   484篇
  2016年   811篇
  2015年   1215篇
  2014年   1344篇
  2013年   1660篇
  2012年   1949篇
  2011年   1895篇
  2010年   1179篇
  2009年   1019篇
  2008年   1379篇
  2007年   1298篇
  2006年   1184篇
  2005年   1092篇
  2004年   987篇
  2003年   927篇
  2002年   752篇
  2001年   119篇
  2000年   104篇
  1999年   136篇
  1998年   116篇
  1997年   98篇
  1996年   83篇
  1995年   87篇
  1994年   90篇
  1993年   90篇
  1992年   54篇
  1991年   58篇
  1990年   62篇
  1989年   46篇
  1988年   53篇
  1987年   38篇
  1986年   44篇
  1985年   53篇
  1984年   38篇
  1983年   43篇
  1982年   32篇
  1981年   42篇
  1980年   26篇
  1979年   38篇
  1978年   31篇
  1977年   28篇
  1976年   25篇
  1975年   23篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.

Background

Myeloperoxidase (MPO) is an abundant hemoprotein expressed by neutrophil granulocytes that is recognized to play an important role in the development of vascular diseases. Upon degranulation from circulating neutrophil granulocytes, MPO binds to the surface of endothelial cells in an electrostatic-dependent manner and undergoes transcytotic migration to the underlying extracellular matrix (ECM). However, the mechanisms governing the binding of MPO to subendothelial ECM proteins, and whether this binding modulates its enzymatic functions are not well understood.

Methods

We investigated MPO binding to ECM derived from aortic endothelial cells, aortic smooth muscle cells, and fibroblasts, and to purified ECM proteins, and the modulation of these associations by glycosaminoglycans. The oxidizing and chlorinating potential of MPO upon binding to ECM proteins was tested.

Results

MPO binds to the ECM proteins collagen IV and fibronectin, and this association is enhanced by the pre-incubation of these proteins with glycosaminoglycans. Correspondingly, an excess of glycosaminoglycans in solution during incubation inhibits the binding of MPO to collagen IV and fibronectin. These observations were confirmed with cell-derived ECM. The oxidizing and chlorinating potential of MPO was preserved upon binding to collagen IV and fibronectin; even the potentiation of MPO activity in the presence of collagen IV and fibronectin was observed.

Conclusions

Collectively, the data reveal that MPO binds to ECM proteins on the basis of electrostatic interactions, and MPO chlorinating and oxidizing activity is potentiated upon association with these proteins.

General significance

Our findings provide new insights into the molecular mechanisms underlying the interaction of MPO with ECM proteins.  相似文献   
992.
993.
MicroRNAs (miRNA) precursor (pre-miRNA) molecules can be processed to release a miRNA/miRNA* duplex. In the canonical model of miRNA biogenesis, one strand of the duplex is thought to be the biologically active miRNA, whereas the other strand is thought to be inactive and degraded as a carrier or passenger strand called miRNA* (miRNA star). However, recent studies have revealed that miRNA* strands frequently play roles in the regulatory networks of miRNA target molecules. Our recent study indicated that miR-17 transgenic mice could abundantly express both the mature miR-17-5p and the passenger strand miR-17-3p. Here, we showed that miR-17 enhanced prostate tumor growth and invasion by increasing tumor cell proliferation, colony formation, cell survival and invasion. miRNA target analysis showed that both miR-17-5p and miR-17-3p repressed TIMP metallopeptidase inhibitor 3 (TIMP3) expression. Silencing with small interfering RNA against TIMP3 promoted cell survival and invasion. Ectopic expression of TIMP3 decreased cell invasion and cell survival. Our results demonstrated that mature miRNA can function coordinately with its passenger strand, enhancing the repressive ability of a miRNA by binding the same target. Within an intricate regulatory network, this may be among the mechanisms by which miRNA can augment their regulatory capacity.  相似文献   
994.
995.
The first crystal structure of human telomeric DNA in complex with the natural alkaloid berberine, produced by different plant families and used in folk medicine for millennia, was solved by X-ray diffraction method. The G-quadruplex unit features all-parallel strands. The overall folding assumed by DNA is the same found in previously reported crystal structures. Similarly to previously reported structures the ligand molecules were found to be stacked onto the external 5′ and 3′-end G-tetrads. However, the present crystal structure highlighted for the first time, the presence of two berberine molecules in the two binding sites, directly interacting with each tetrad. As a consequence, our structural data point out a 2:1 ligand to G-tetrad molar ratio, which has never been reported before in a telomeric intramolecular quadruplex structure.  相似文献   
996.
997.

Background and Aims

Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status.

Methods

Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming.

Key results

In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility.

Conclusions

Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.  相似文献   
998.
River and stream biofilms in mediterranean fluvial ecosystems face both extreme seasonality as well as arrhythmic fluctuations. The hydrological extremes (droughts and floods) impose direct changes in water availability but also in the quantity and quality of organic matter and nutrients that sustain the microbial growth. This review analyzes how these ecological pulses might determine unique properties of biofilms developing in mediterranean streams. The paper brings together data from heterotrophic and autotrophic community structure, and extracellular enzyme activities in biofilms in mediterranean streams. Mediterranean stream biofilms show higher use of peptides during the favorable period for epilithic algae development (spring), and preferential use of cellulose and hemicellulose in autumn as a response to allochthonous input. The drying process causes the reduction in bacterial production and chlorophyll biomass, but the rapid recovery of both autotrophs and heterotrophs with rewetting indicates their adaptability to fluctuations. Bacteria surviving the drought are mainly associated with sediment and leaf litter which serve as “humid refuges”. Some algae and cyanobacteria show resistant strategies to cope with the drought stress. The resistance to these fluctuations is strongly linked to the streambed characteristics (e.g., sediment grain size, organic matter accumulation, nutrient content).  相似文献   
999.
The combined effect of external environment and energy allocation strategy of the organism on longevity can be exceptional. In a cold oligotrophic fishless habitat, individual Daphnia can live for over a year, several times the usual Daphnia lifespan. This extreme lifespan is in part a consequence of the overwintering strategy which includes storing resources and delaying reproduction until another spring. Yet, contrasting strategies may be applied by Daphnia, resulting in over twofold differences in lifespan within a single habitat. We identify physiological mechanisms mediating such differences in longevity in closely related Daphnia of two lineages coexisting within a high altitude lake, testing the predictions that long-lived animals stay in colder waters and have lower metabolic rates, irrespective of temperature. Vertical distribution of the animals was assessed during three summer stratification seasons, and metabolic activity was measured as oxygen consumption and RNA:DNA ratio. The results not only support our predictions but also reveal that habitat choice is dependent on reproductive status rather than genotype. The young individuals of the overwintering lineage may delay reproduction in part by staying in colder waters than the reproducing adults, which together with low intrinsic metabolic rates may underlie the longevity of Daphnia of this lineage.  相似文献   
1000.
p120-catenin is a multidomain intracellular protein, which mediates a number of cellular functions, including stabilization of cell-cell transmembrane cadherin complexes as well as regulation of actin dynamics associated with barrier function, lamellipodia formation, and cell migration via modulation of the activities of small GTPAses. One mechanism involves p120 catenin interaction with Rho GTPase activating protein (p190RhoGAP), leading to p190RhoGAP recruitment to cell periphery and local inhibition of Rho activity. In this study, we have identified a stretch of 23 amino acids within the C-terminal domain of p120 catenin as the minimal sequence responsible for the recruitment of p190RhoGAP (herein referred to as CRAD; catenin-RhoGAP association domain). Expression of the p120-catenin truncated mutant lacking the CRAD in endothelial cells attenuated effects of barrier protective oxidized phospholipid, OxPAPC. This effect was accompanied by inhibition of membrane translocation of p190RhoGAP, increased Rho signaling, as well as suppressed activation of Rac1 and its cytoskeletal effectors PAK1 (p21-activated kinase 1) and cortactin. Expression of p120 catenin-truncated mutant lacking CRAD also delayed the recovery process after thrombin-induced endothelial barrier disruption. Concomitantly, RhoA activation and downstream signaling were sustained for a longer period of time, whereas Rac signaling was inhibited. These data demonstrate a critical role for p120-catenin (amino acids 820–843) domain in the p120-catenin·p190RhoGAP signaling complex assembly, membrane targeting, and stimulation of p190RhoGAP activity toward inhibition of the Rho pathway and reciprocal up-regulation of Rac signaling critical for endothelial barrier regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号